Interest Accrual Mechanics

Each time borrow or repay happens, a checkpoint of the borrowerIndex is updated and saved into the smart contract storage. The index defines how much interest has accrued, starting with the block when the last time interest was applied, until the current block. For every newly deployed Borrowing Pool, the initial borrowerIndex is ' 1 ’. The rate at which it accumulates interest every block is the InterestRate (i.e. 10\%) divided by the number of blocks per year. Blocks delta ($\Delta b l o c k s$) is the current block number subtracted by the block number saved in the checkpoint Dblocks $=$ blockNumber $_{n}-$ blockNumber $_{n-1}$.
borrowerIndex ${ }_{n}=\left(\frac{\text { InterestRate }}{\text { blocksPerYear }} \times \Delta\right.$ blocks \times borrowerIndex $\left.\quad{ }_{n-1}\right)+$ borrowerIndex $_{n-1}$ Or, another representation

A borrower's balance, including accrued interest, is calculated by dividing the current borrowerIndex to the index when the user's balance was last checkpointed and multiplying it by the principal.
borrowerBalance $_{n}=\frac{\text { borrowerIndex }_{n}}{\text { borrowerIndex }_{n-1}} \times$ principal

Borrowing Pool Dynamics

utilizationRatio $_{b}=\frac{\text { borrowerBalance }_{b}}{\text { poolSize }_{b}}$
where
poolSize ${ }_{b}$ Cash $_{b}+$ borrowerBalance $_{b}-\left(\right.$ reserveBalance ${ }_{b}+$ insuranceBalance $_{b}+$ interestOutstanding $\left.{ }_{b}\right)$
where Cash is the total amount of underlying liquidity that has not been borrowed, meaning the amount of base currency tokens (i.e on the balance of the Borrowing Pool.

Lenders APR in the b Borrowing pool is $A P R_{b}=$ InterestRate \times utilizationRatio $_{b}$

Insurance and Reserve Balances

Both reserve and insurance balances (reserves) are calculated the same way. The only difference between them is the factor which represents the percentage of the interestAccrued per block
reserveBalance $_{n}=$ reserveBalance ${ }_{n-1}+$ borrowerBalance $_{n-1} \times \frac{\text { factor }_{\text {reserve }} \times \text { InterestRate }}{\text { blocksPerYear }^{\text {factor }_{\text {insurance }} \times \text { InterestRate }}} \times \Delta$ blocks
insuranceBalance $_{n}=$ reserveBalance $_{n-1}+$ borrowerBalance $_{n-1} \times \frac{\text { blocksPerYear } \times \Delta b l o c k s}{}$

Liquidity Available

liquidityAvailableBorrower $_{b}=$ poolSize $_{b}-$ borrowerBalance $^{\prime}$ interestOutstanding ${ }_{b}=$ borrowerBalance ${ }_{b}-$ totalPrincipal $_{b}$ liquidityAvailableLenders $_{b}=$ poolSize $_{b}-$ borrowerBalance + interestOutstanding $_{b}$

